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Abstract—Estimating the inter-city population flow is 
critical for modeling the spread of COVID-19. However, for 
most cities, it is difficult to extract accurate population numbers 
for inflow and outflow. On the other hand, mobile carriers and 
Internet companies can estimate the distribution of population 
flow by tracking their users; but their data only cover part of 
the travelers. In this paper, we present a data-driven hyper-
network model to aggregate these two types of data and 
complete the inter-city OD matrix. We first propose a cross-
layer breadth-first traversal algorithm to estimate the inflow 
and outflow population of each city, then complete the OD 
matrix with an optimization model. Our experiments on a real-
world dataset prove the accuracy and efficiency of our model. 

Keywords—hyper-network, data-driven modeling, origin-
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I. INTRODUCTION 
The current COVID-19 outbreak is one of the greatest 

challenges that humanity has ever faced, and consequently, 
many new research questions have surfaced. Population 
movement between regions, on which many epidemic models 
rely, is an important factor for modeling the spread of COVID-
19 [1, 2]. For the first wave of the COVID-19 epidemic that 
started in Wuhan, China, it has been found that the geographic 
distribution of COVID-19 infections can be rather accurately 
predicted by the population outflow from Wuhan [3]. For the 
new clusters of COVID-19 cases emerging in Jilin and Beijing 
recently, population movement data are also fundamental in 
estimating the risk of the epidemic spreading to other cities. 

The number of people traveling between different places 
can be specified using the Origin Destination (OD) matrix, 
where the element ijn  represents the number of people 
moving from region i  to region j . As an important method 
in the field of transportation and logistics, OD matrix 
estimation has long been studied. A characteristic of the OD 
matrix estimation problem is that it relies heavily on the 
available data. Researchers have proposed a variety of OD 
matrix estimation algorithms to handle different types of input 
data. Before pervasive computing devices (e.g. mobile phone 
and GPS devices) are widely used, the most commonly used 
data source is traffic counts. For this type of input data, only 
the traffic flows at specific positions are observed, while the 
trajectories of travelers are missing. A commonly used 
approach is to impose some assumptions (e.g., the route 
choice pattern) to the OD matrix. Transport demand models, 
such as the gravity model [4] and the opportunity model [5], 
are calibrated based on the traffic counts to perform the 

estimation. With the development of mobile devices, digital 
footprints are available nowadays, enabling data-driven OD 
estimation algorithms. Data-driven algorithms usually 
leverage cell phone data [6] or GPS data [7] to estimate the 
OD matrix, focusing on tracking travelers based on the raw 
positioning data. 

This paper aims to tackle a different OD matrix 
completion problem, which is encountered in modeling the 
inter-city spread of COVID-19 in China. On one hand, only a 
small number of cities can provide accurate traffic counts (i.e., 
the total number of inflow and outflow population), as most  
local governments are unable to track all of the origins or 
destinations of the population flow. On the other hand, mobile 
carriers (e.g., China Mobile) and Internet companies (e.g., 
Baidu) can track their users based on the positioning data, thus 
calculating the distribution of population inflow and outflow 
of each city. However, they may fail to obtain the total number 
of people moving in and out of cities, since the positioning 
data can only cover their own users. 

In this paper, we assume that the following two types of 
data are available: (1) the accurate total population outflow (or 
inflow) of one or a few cities, and (2) the distribution of 
population inflow and outflow of each city. This paper 
aggregates such information to complete the inter-city OD 
matrices, which is rather different from the two typical OD 
matrix estimation problems mentioned earlier. On one hand, 
extracting trajectories of travelers is beyond the scope of this 
paper. Rather, we assume that such data is already provided 
by mobile carriers or Internet companies. On the other hand, 
traffic counts-based models are not very suitable for our 
problem, where the aggregation of existing information alone 
is sufficient to complete the OD matrix. Additional inferences 
and assumptions are not necessary. 

One powerful model to aggregate information from 
multiple data sources is the hyper-network model [8-11]. Its 
hyper-network structure could transform and combine 
complicated mathematical relationships between data into one 
structure. A standard hyper-network model is composed of 
several single layers and inter-layer connections between 
them. Data from the same information source form a single-
layer network, where each data element serves as a node, and 
the relations between them form intra-layer edges. The other 
kind of edge, the inter-layer connections, are set by the 
relationship between data from different information sources. 

In this paper, we propose OD-HyperNet, a data-driven 
hyper-network model, to integrate the hyper-network model 



into the task of completing OD matrix. In real-world migration 
population estimating tasks, it works well in obtaining the 
inflows and outflows in most of the cities when such data of 
one or several cities are known. OD-HyperNet is composed of 
two single-layer networks, namely the population inflow 
network and the population outflow network. We use the 
inter-layer connections to link the nodes belonging to the same 
cities in the two-layer hyper-network, thereby connecting and 
aligning the two single-layer networks. Within OD-HyperNet, 
we utilize a cross-layer breadth-first traversal algorithm to 
estimate the population inflows and outflows. We also 
propose a practical completion procedure to lower the sparsity 
of the OD matrix. 

Our experiment is based on the Baidu Migration dataset. 
It includes two parts: (1) the total number of people moving in 
and out of each region during a specific period, and (2) the 
inter-regional traffic flow, i.e., the number of people moving 
from one region to another. We evaluate the overall estimation 
accuracy base on an R-Squared metric, then show the 
influence of time and starting node. Results suggest that our 
model can complete the OD matrix very well and provide 
precise estimations with an accuracy of at least 0.975. To 
enhance the performance, we recommend to start traversal 
from cities with relatively high traffic and avoid tremendous 
fluctuations in data sequence. 

II. PROBLEM DEFINITION 
In this section, we stress the urgency of completing the 

origin-destination (OD) matrix, then present the assumptions 
and mathematical formulation for this problem. 

A. Partially Observed Origin-Destination Matrix 
A high-quality transit OD matrix acts as a solid foundation 

in many application problems, such as transportation planning 
[12], market evaluation [13], and epidemiological estimation 
[14]. Unfortunately, it is not always easy for people to obtain 
enough suitable data to build it.  

There are two standard data providers for OD flow, but 
both of them have drawbacks. First, mobile network operators 
or cellphone APPs (e.g. China Mobile or Baidu Map) could 
generate real-time data by tracking their users. These data 
suffer from two aspects: they could only access their own 
users’ moving trace, while the market share of them in 
different places is hard to analyze. Another provider, the 
government, could acquire more reliable data by surveys. 
However, such methods are expensive and sometimes result 
in old-fashioned data. Such a condition urges us to discover 
an appropriate method to complete the partially observed OD 
matrix.  

In this paper, we focus on migration data from mobile 
carriers and cellphone APPs, for real-time information is more 
valuable to in driving decisions. To overcome the typical 
drawback of missing OD flows, we propose a data-driven 
modeling method, which can be applied to any dataset of this 
kind.  

B. Basic Assumptions and Mathematical Formulation 
Migration data provided by mobile carriers and cellphone 

APPs mainly fall into two categories: (1) the traffic flow 
between OD pairs, and (2) the total moving-in/out population 
of selected cities. Without loss of generality, we process these 
two types of data following three assumptions: 

1) Assumption 1: The market occupancy of a particular 
data provider in city i  is iα . Normally, when i j≠ , 

i jα α≠ .  
2) Assumption 2: The users of one data provider are 

uniformly distributed in the moving-in/out population. i.e., in 
city i , if its moving-in population is in

iN  and moving-out 
population is out

iN , then the inflow/outflow users of the data 
provider are in

i iNα  and out
i iNα .  

3)  Assumption 3: The inflow/outflow population 
occupies a relatively small portion of the total population in a 
city.  

The analysis process runs as following: For the first type 
of data, we suppose that the number of people moving out of 
city i  to city j  is out

ijn , the total number of people moving 
out of city i  is out

iN , then the proportion moving out of city 
i  to city j  is defined as /out out out

ij ij ip n N= . Similarly, the 
proportion of newcomers of city j  who come from city i  
is defined as /in in in

ji ji jp n N= , where in
jN  represents the total 

number of migrants in city j  and in
jin  among them are from 

city i . Since out in
ij jin n= , out out in in

ij i ji jp N p N=  . Therefore, once 
the moving-in/out population in a city is known, the data of its 
related cities can be inferred. The first type of data is usually 
released as the outflow proportion matrix { }out out

ijp=P  and 
the inflow proportion matrix { }in in

jip=P  , which are 
estimated based on the user positioning data. In practice, these 
matrices are usually rather sparse, because there may not be 
any users travelling between for most of the city pairs. 

The second type of data can be classified into two 
categories: (1) Total inflow and outflow population, i.e., in

iN  
and out

iN , which are released by the government. Such data is 
scarce but somewhat accurate; (2) Migration Index estimated 
by mobile network operators or Internet companies, which is 
a function of the moving-in/out users of a data provider. We 
indicate the moving-in and moving-out migration index of city 
i  by ( )in in

i i iI f Nα=  and ( )out out
i i iI f Nα=  respectively. 

The input of our model is the partially observed transport 
probability matrix outP  and inP . Without loss of generality, 
we assume that only the Top-K entities in each row of these 
two matrices are observed. That is, we only know the 
origins/destinations with the Top-K transport probabilities of 
each city. Besides, we also need at least one city whose 
accurate inflow or outflow population is known. That is, at 
least one out

iN  or in
iN  is needed. 

The output of our model is the completed OD matrix 
{ }ijOD ×N N , where = out

ij ijOD n  is the number of people who 
transport from city i  to city j . 

III. MODEL 

A. OD-HyperNet: the Origin-Destination Hyper-Network 
Model 
Based on the original definition of hyper-network [8, 10, 

11], we propose the OD-HyperNet model to describe OD flow 
data. 

A hyper-network ( ( , ), , )H B N E M R  is constructed from a 
base network ( , )B N E , in which N represents the set of all 



members (nodes) and E  represents the set of connections 
(edges). The set of single layer networks is denoted as M , 
and the number of layers in the hyper-network is M . In the 
behavior matrix R , each element ( , )i MR  describes the 
connection pattern of node i  in layer M .   

Intuitively, the cities and the migration flows between 
them constitute a network, where cities are nodes, and the 
migration flows between the cities are edges. We build two 
migration networks, an inflow network, and an outflow 
network based on the previous definition.   

In the outflow network, the weight of node i  is set to 
out
iN , which is the total number of people moving out of city 

i . The weight of directed edge ( , )i j  represents out
ijp , which 

is the proportion of migrants from city i  who move to city 
j . Similarly, in the inflow network, the weight of node j , 

in
jN , is the total number of people moving into city j ; the 

weight of directed edge ( , )j i , in
jip , is the proportion of the 

inflow population of city j  coming from city i .  

Notice that directed edge ( , )i j  in the outflow layer 
means that people move from city i  to city j , while an 
edge ( , )t k  in the inflow layer shows the opposite direction, 
i.e., people move to city t  from city k . Therefore, out-
neighbors in the outflow layer represent the origins of inter-
city trips, while the out-neighbors in the inflow layer are the 
destinations. Similarly, the in-neighbors in the outflow layer 
denote destinations, while in-neighbors in the inflow layer are 
origins. As available public data are often restricted to the 
Top-K origins/destinations of each city, the out-degree of each 
vertex in both layers is a constant, K . However, the in-
degrees of each vertex in both layers can differ significantly. 
A high in-degree in the outflow layer denotes that the city acts 
as a frequent destination of the inter-city migration, while 
higher in-degree in the inflow layer means the city is more 
likely to be a common destination. 

 
Fig. 1. An illustrative example for the inflow-outflow hyper-network 

To construct the anchor links, we refer to the inter-layer 
correspondence between nodes (i.e., out

iN  and in
iN  belong 

to the same city i ) and edge ( out out in in
ij i ji jp N p N=  ) . Figure 1 

gives an example of our proposed migration inflow-outflow 
hyper-network. 

B. Inferring Inflow/Outflow Population based on Cross-
Layer Breadth-First Search 
In most of the cases, we can calculate the proportion out

ijp  
and in

jip  from the data collected by mobile phone network 
operators. However, the precise numbers of inflow/outflow 

population (i.e., out
iN  and in

jN ) are difficult to obtain. To 
conquer the problem, we first start from one city i  with 
known inflow/outflow population, then iteratively derive the 
data of most cities based on out out in in

ij i ji jp N p N=  . 

We apply the notion of interlayer neighbor to represent 
such relationship. City i  and city j  are interlayer 
neighbors if there is a pair of edges with opposite directions in 
two layers (e.g., directed edges ( , ) Eouti j ∈ and ( , ) Einj i ∈ , 
where Eout  and Ein  represent the set of edges of the outflow 
and inflow network, respectively). For one pair of inter-layer 
neighbors, if the total outflow population of city i  is known, 
then the total inflow population of city j  can be expressed 
as = /in out out in

j ij i jiN p N p . Thus, the knowledge of only one or a 
few cities’ inflows/outflows is enough to power the whole 
research. In Table I, we propose a cross-layer breadth-first 
search (BFS) algorithm for a two-layer hyper-network as an 
example. Two critical catches here are (1) cross-layer BFS 
needs two queues to store the nodes of inflow and outflow 
layer, and (2) cross-layer BFS visits inter-layer neighbors 
iteratively rather than intra-layer neighbors.  

TABLE I.  CROSS-LAYER BREADTH-FIRST SEARCH ALGORITHM 

Input:  
Weights of all the edges in each layer. 
Weights of one or several nodes. 

Output:  
Weights of all the nodes in each layer. 

(1) Establish two queues: inQ  and outQ , enqueue nodes 

with known inflow data into inQ , while nodes with 

known outflow data are loaded into outQ . Here we 

suppose the weight of node i  in the outflow layer out
iN  

is known, thus we enqueue node i  into outQ . 

(2) While outQ  is not empty, dequeue a node i  and visit 
its out-neighbors of the outflow layer, i.e., find the set of 
node j  where there exists ( , ) outi j E∈ . 

(3) For each out-neighbor j , check whether edge 
( , ) inj i E∈  exists in the inflow layer. If such edge exists, 
we calculate the weight of node j  in the inflow layer 

by = /in out out in
j ij i jiN p N p  and load node j  into inQ . 

(4) While inQ  is not empty, dequeue a node j  and visit 
its out-neighbors of the inflow layer, i.e., find the set of 
node k  where there exists ( , ) inj k E∈ . 

(5) For each out-neighbor k , check whether edge 
( , ) outk j E∈  exists in the outflow layer. If so, we 
calculate the weight of node in the outflow layer by 

= /out in in out
k jk j kjN p N p  and load node k  into outQ . 

(6) Iteratively perform step (2) to step (5) until inQ  and 

outQ  are both empty. 

 

C. OD Matrices Completion 
In the previous section, we obtain the weights ( out

iN  and 
in
iN ) of each node i  in both layers. Moreover, the weights of 

directed edges in each layer can be expressed as 



= /out out out
ij ij ip n N  and = /in in in

ji ji jp n N , where =out in
ij jin n  is the OD 

flow from city i  to city j . It enable us to calculate the OD 
matrix { }ijOD ×N N , where = =out in

ij ij jiOD n n  and N  is the 
number of the cities. 

We can first calculate the OD matrix using either the 
inflow layer or the outflow layer. Since only the Top-K 
origins/destinations and their proportion are known, each row 
of the OD matrix only have K  non-zero elements. Therefore, 
the number of the non-zero elements in the OD matrix is 

0
= KOD N , where 

0
  denotes the L0-norm. Our goal is to 

complete the sparse matrix as much as possible, which can be 
regarded as a matrix completion problem [15]. Existing 
literatures reveal the spatial affinity feature of the OD matrix, 
that is, there are some rows similar to each other [16]. 
Therefore, we assume the OD matrices are low-rank. 

However, compared with the general low-rank matrix 
completion problem, the OD matrix completion problem has 
a lot of intrinsic characteristics that can be leveraged. Much 
information can be provided by aggregating data from both 
layers in our OD-HyperNet model. Our OD matrix completion 
method has three steps. 

1) Step 1: We calculate two OD matrices based on the 
inflow layer and the outflow layer respectively. For the 
outflow layer, the OD matrix is calculated by 

= =out out out out
ij ij ij iOD n p N . For the inflow layer, the OD matrix is 

calculated by =in in in in
ij ji ji jOD n p N=  .  

2) Step 2: We aggregate these two OD matrices based on 
the following equation, 

( ) / 2, if
= max( )  

0
, 0 and,if

0, if
 

0

out in out in
ij ij ij ji

out in out in out in
ij ij ij ji ij ji

out i
i

n
ij ji

j

OD p
O

OD p
p p pD OD OD p

p p
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 . (1) 

3) Step 3: To further reduce the sparsity of the OD matrix 
obtained by Equation (1), we apply the following low-rank 
matrix completion formulation,  
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where X  is the decision variable (i.e., the completed 
matrix) and 

*
X  is the nuclear norm of X , which is applied 

to approximate the rank of X . The set Ω  contains the 
observed data. Program (2) aims at seeking the matrix X  
with the lowest rank that fits the observed data and the total 
inflow and outflow population.  

Theoretically, Program (2) provides a proper formulation 
of the OD matrix completion problem. However, it may not 
be feasible in practice due to the bias in data. Thus, we provide 
an alternative formulation, Program (3), by relaxing some of 
the constraints. 
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In Program (3), /out out
ij ij ip OD N= , that is ,we normalize each 

row of the OD matrix by out
iN . Therefore, the decision 

variable ijX  is the proportion rather than the number of 
travelers. Therefore, the elements of the completed OD matrix 
is calculated ijX . Program (3) is a constrained convex 
optimization problem, which can be solved by solvers such as 
CVXPY [17, 18]. 

IV. EXPERIMENTS 
In this section, we apply the OD-HyperNet model to a case 

study using the Baidu Migration dataset, then validate the 
robustness and the accuracy of the OD flow estimation. 

A. Data Description 
The experiments are carried out based on the Baidu 

Migration dataset from Jan 1, 2020 to Jan 31, 2020. We collect 
the migration data of 352 cities. For each city, the dataset 
contains the following information: (1) Top-100 origins or 
destinations with the proportion of daily population moving 
in/out of the given city, and (2) Baidu Migration Index that 
reflects the size of the population moving in or out the given 
city.  

TABLE II.  EXAMPLES OF THE ORIGIN-DESTINATION DATA 

City A City B Date Migration 
Type Proportion 

Wuhan Xiaogan 2020/01/23 Move-Out 16.91% 

Wuhan Huanggang 2020/01/23 Move-Out 14.12% 

… … … … … 
Shenzhe

n Dongguan 2020/01/23 Move-In 16.77% 

Shenzhe
n Huizhou 2020/01/23 Move-In 11.84% 

… … … … … 

TABLE III.  EXAMPLES OF THE MIGRATION INDEX DATA 

City A Date Migration Type Migration Index 

Wuhan 2020/01/23 Move-Out 11.14 

Wuhan 2020/01/23 Move-In 1.75 

… … … … 

Shenzhen 2020/01/23 Move-Out 17.78 

Shenzhen 2020/01/23 Move-In 3.37 

… … … … 

 

Table II shows the format of the origin-destination (OD) 
data. For example, the population who migrated from Wuhan 
to Xiaogan on Jan 23, 2020 accounts for 16.91% of the total 
outflow population of Wuhan. Likewise, the population that 
flows into Shenzhen from Dongguan on that day accounts for 
16.77% of Shenzhen's total inflow population.  



Table III lists the migration scale index data. It reads that 
the outflow population scale indexes of Wuhan and Shenzhen 
on Jan 23 were 11.14 and 17.78, respectively, which means 
that the total outflow population of Shenzhen on Jan 23 is 1.6 
times higher than Wuhan. 

In this paper, we first use the OD data to construct OD-
HyperNet models for each day, then infer Baidu Migration 
Index based on the OD-HyperNet models. Assuming we only 
know one city’s Baidu Migration Index, we validate the 
performance of our proposed inference method. The ground 
truth is the Baidu Migration Index of all the other cities. 

B. Robustness and Accuracy of Inflow/Outflow Population 
Estimation 
As is illustrated in Section II, the accuracy of the OD 

matrix depends only on the accuracy of the estimated inflow 
and outflow population. Therefore, we evaluate the accuracy 
of the inflow/outflow population estimation. We also evaluate 
the robustness when starting from different vertices to perform 
cross-layer BFS. We demonstrate that only one starting vertex 
is needed, and our proposed method is not sensitive to the 
starting vertex. This finding is rather important because the set 
of candidates for the starting vertex (i.e., the cities whose 
inflow or outflow population is known) is rather limited in 
most of the practical applications.  

Since the Baidu Migration dataset covers the Top-100 
origins/destinations of each city, the inter-layer and the intra-
layer connections are rather dense in the OD-HyperNet 
models. However, this question remains to be determined: 
How many starting points does the cross-layer BFS need at 
least to infer the inflow and outflow population of all the other 
cities?  

Since one city corresponds to two nodes (i.e., city i  
corresponds to out

iN  in the outflow layer and in
iN  in the 

inflow layer), there are 704 nodes in our proposed hyper-
network model. We first choose each node as the starting point 
to perform the cross-layer BFS algorithm. It turns out that the 
cross-layer BFS starting from any given node in the OD-
HyperNet can reach all the other nodes. Therefore, we can 
select only one city, rather than a set of cities, as the starting 
point for each OD-HyperNet model to perform cross-layer 
BFS. 

We choose 10 different nodes as the starting point of the 
cross-layer BFS algorithm and evaluate the overall estimation 
accuracy based on the R-Squared metric.  

 
Fig. 2. The in-degrees in both layers and the starting points 

The starting points are chosen based on the in-degrees of 
the corresponding cities in both layers. Figure 2 shows a 
scatter plot, selecting the in-degrees of outflow layer and 
inflow layer to appear on the x-axis and y-axis, respectively. 

We choose 5 typical cities for our study and mark them in red 
in Figure 3. For each city, we separately assume the inflow 
population in

iN or outflow population out
iN  is known. We 

use the outflow migration index to represent out
iN , and set 

in
iN  to the inflow migration index, thus obtaining 10 starting 

points to perform the cross-layer BFS. 

We evaluate the overall estimation accuracy base on the 
R-Squared metric defined as Equation (4). This metric is 
commonly used to evaluate the accuracy of the OD flow 
estimation [19]. The ground-truth of the inflow/outflow 
population of city i  is denoted as n

i
iN  and t

i
ouN , the 

corresponding average values are expressed as n
i
iN  and n

i
iN . 

The estimation results are ˆ n
i
iN  and ˆ t

i
ouN . Better estimations 

are indicated by higher R-Squared values [20].   

 
( ) ( )
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out out in in
n n

i i i
i i

N N N N

N N N N
θ = =

= =

− −
= −

− −

∑ ∑

∑ ∑
. (4) 

Figure 3 illustrates the R-Squared values for the inference 
results of the cross-layer BFS starting from out

sN  or in
sN , 

where s  is one of the 5 cities. 

There are three key observations of Figure 3. First, the 
overall inference results are rather accurate, and the 
performance is relatively robust to different choices of the 
starting point. Second, choosing vertex with higher in-degrees 
improves the accuracy of the inference regardless of the layer. 
This indicates that transportation centers are more effective as 
the starting points. Third, the inference accuracy is rather 
stable from Jan 1 to Jan 22. However, the overall inference 
accuracy dramatically fluctuates after Jan 23. The reason 
might be many cities have had issued traffic restricting 
policies after Jan 23. Since Baidu may calculate the original 
data (e.g., t

i
ouN  and out

ijp ) based on specific traveling pattern, 
significant changes in traveling pattern can lead to larger error 
and instability. 

 
Fig. 3. Inference accuracy at varying starting points 

We further calculate the estimation error of each value 
based on ˆ( ) /io io io io

i ii iE N N N−= , where o
i
iN  represents either 

n
i
iN  or t

i
ouN  of the city i . Figure 4 shows that most of 

( 0.2,0.2)io
iE ∈ − , that is, most of the inference error is within 

the range of ( 0.2 ,0.2 )io i
i

o
iN N− . We compare the distribution of 

io
iE  for the cross-layer BFS algorithm starting from 4 



different vertices (i.e., the inflow/outflow population of 
Beijing and Fuxin) in Figure 5. This agrees with our previous 
results that starting from n

i
iN  or t

i
ouN  of big cities can be 

more accurate. 

 
Fig. 4. Distribution of error at varying starting points 

C. Completing OD Matrix 
In this part, we evaluate the model’s performance in 

completing the OD matrices. Since we do not have the ground 
truth of the missing data, we only compare the sparsity of the 
matrix after Step (1) ~ (3). 

Figure 5 gives examples of the OD matrices after each step. 
Each row represents the OD matrices at one day. The three 
columns are the OD matrices after Step (1) ~ (3), respectively. 
For better visualization, we normalize each column of the OD 
matrices by the total outflow population of the corresponding 
city, that is, we obtain = /out out

ij ij ip OD N  and visualize the 

matrix { }out
ijp

×N N
.  

 
Fig. 5. The matrix completion results of three steps  

Figure 5 demonstrates that our OD matrix completion 
procedure gradually decreases the sparsity of the OD matrices 
step by step to ultimately form a rather dense OD matrix. 
Interestingly, it can also be noticed that there are some time-
invariant patterns of the matrices in each column. 

V. CONCLUSION 
Accurate tracking of population flow is crucial in the 

prediction and containment of possible infections during the 
current COVID-19 epidemic. However, real-world data are 
not accessible in many cases, which may result in sparse OD 
matrices. This paper solves the problem by incorporating 

hyper-network model with data-driven method. Our model is 
able to interpolate and infer missing pieces of data and 
provides high estimation accuracy and matrix completeness. 
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